REDISTRICTING WITH OPTIMIZATION

Robert Ashford Optimization Direct Inc.
Ann Stephens Encore Data Inc.
Alkis Vazacopoulos Optimization Direct Inc.

INFORMS Analytics Meeting Houston April 2022

Redistricting..

US Census Bureau does a full census every ten years

Must use to redraw district boundaries *i.e.* redistrict, each state and city for the election of representatives to

- o US Congress
- State Senate
- State House
- o City Wards, etc.

..So that

The districts are balanced and fair

Make geographical sense

Supported by consensus

Maybe don't want...

Boston in 1812

South Essex district

Created by Massachusetts governor Elbridge Gerry

Maryland Congressional Districts (2010 Census)

Maryland Congressional District 3

..So that

The districts are balanced and fair

Make geographical sense

Supported by consensus

Maybe don't want...

- Argument / Dispute
- Litigation
- Delay

Need

Procedure for drawing district boundaries that is:

Flexible

Transparent

Auditable

Beyond dispute

What about optimization?

Optimization

Mixed Integer Programming (MIP)

"optimization .. for full-scale districting plans are likely computationally intractable .." DeFord et al. (2021)

".. literal global optimization is completely intractable for problems of this size and complexity.." Duchin (2021)

I would agree... until now

Redistricting: The Task

US Census Bureau (Public Law 94-171) divides each State into divisions such as:

	Average Pop	No. in Virginia	
Tract	4000	2198	
Block Group	1500	5963	
Voter District	2500	3531	
Block	50	163491	

Task is to assign each division to a district

Have districts such as		range	No. in Virginia
	Congressional	1 - 52	11
	State Senate	20 - 67	40
OPTIMIZATION	State House	40 - 400	100

Redistricting: The Constraints

Balance: the population of each district must be the same (+/- 2%)

Objective then Hard

Contiguity: the districts cannot be split into separate geographical areas Hard

Compactness: the districts should be compact and not elongated or splattered and should not have holes

Soft

Redistricting: The Constraints 2

Minority-Majority Voting Rights Act (1965 and renewed): if a district with a majority of a minority (racial or community interest) can reasonably be created, it should be

No unnecessary splits: counties e.g. should not be needlessly split across districts **Soft**

Proximity to previous districting: if it was a good one Soft

Redistricting: The Math based on Hess et al. (1965)

Tracts $t \in \mathcal{F}$

Choose t_1 , t_2 , ..., $t_D \in \mathcal{F}$ to be tracts serving as centers of districts 1, 2, ..., D

Decision variables:

 $x_{td} \in \{0,1\}$ where t, $d \in \mathcal{F}$ 1 iff tract t assigned to district centered on tract d

Assignment

Each tract must belong to a district

$$\sum_{d \in \mathcal{S}} x_{td} = 1 \quad \forall \ t \in \mathcal{S}$$

Assignment of tracts to districts

$$X_{td} \leq X_{dd} \ \forall t, d \in \mathcal{F}$$

Need exactly N districts

$$\sum_{d \in \mathcal{S}} x_{dd} = N$$

Have a MIP – what could go wrong?

Model Size

Congressional districting:

677K binaries 18M matrix elts for Arkansas

5M binaries 129M matrix elts for Virginia

Poor results

Shape of districts not good

Could have holes i.e. a district being a ring around one or more others

Making MIP Work: Size

Remove unnecessary edges from assignment graph i.e. potential allocations

Can reduce the n(n-1) edges by 1% - 99%

Depends on number of districts as well as tracts

Only use subset of ${\mathcal S}$ as candidates for district centers

Fatuous to use all ${\mathcal S}$ as such candidates

Making MIP Work: Poor District Shapes

Making MIP Work: Poor District Shapes

Introduce diamond constraints

Bans holes

If t is assigned to district centered on d ensure all tracts with centers in the diamond e.g. u are also so assigned

Increases model size

Arkansas Again

Diamond constraints

Penalize splitting capital city

Penalize splitting counties

Arkansas Again

Keep Little Rock together in same district No split counties Maximum pop. dev. < 1.5%

Making MIP Work: Performance

Tighten contiguity constraints

Run a sequence of models using the solution from the last as a start for the next

Start with as few hard constraints as possible and minimize district population deviation

Leave out min-maj, splits etc. to begin with

Harden population balance constraints

Making MIP Work: Performance 2

Add soft constraints for: Diamonds; Min-maj; Split counties; etc. in order of priority

Use increasing numbers of candidate district centers

Making MIP Work: Performance 2

Use the most powerful large-scale optimizer: ODH | CPLEX or ODH | Gurobi

Standard MIP optimizers will likely still fail

Get a sequence of improving solutions

Stop when relevant KPI achieved or time limit hit

Usually aim for ~ 5% optimality gap

Arkansas State Senate

Max dev 2.67%

5 min-maj districts

26 split counties

Using MIP in Practise: The City of Pine Bluff

Pine Bluff is a city in Arkansas

Divided into 4 wards

Population declined by 13% since 2010

Need to redraw the ward boundaries

Divide the city into 109 voting districts

Pine Bluff in 2010

Final Redistricting

Conclusions

MIP is a useful tool for redistricting

All constraints except contiguity are soft

Flexibility offered by MIP is essential in practise

Established methodology, simple python model and commercial software \Rightarrow **Auditable**

Must take care with modelling

Must use powerful large-scale optimizer like ODH

References

DeFord D., Duchin M., and Solomon J. (2021), "Recombination: A Family of Markov Chains for Redistricting", *Harvard Data Science Review*, Issue 3.1

Duchin M. (2021), by email 7/9/21

Hess S.W., JB Weaver J.B., Siegfeldt H.J., Whelan J.N., and Zitlau P.A. (1965)
"Nonpartisan political redistricting by computer", *Operations Research*, 13(6):998-1006.

Oehrlein J. and Haunert J-H. (2017), "A cutting-plane method for contiguity-constrained spatial aggregation", *Journal of Spatial Information Science*, (15):89-120.

ODH | CPLEX (2022), see www.optimizationdirect.com/ODheuristics.php

Thanks for listening

Robert Ashford
rwa@optimizationdirect.com
www.optimizationdirect.com

Making MIP Work: Size

Remove unnecessary edges from assignment graph i.e. potential allocations

Can reduce the n(n-1) edges by 1% - 99%

Depends on number of districts as well as tracts

Only use subset of ${\mathcal S}$ as candidates for district centers

Fatuous to use all ${\mathcal S}$ as such candidates

Making MIP Work: Additional Constraints

Use soft constraints to handle

Minority-Majority, Splits and Proximity

Not complicated to do

Had enough math already!

But need to be careful in choice of penalties

