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What is Optimization?
Minimization (or maximization) of function of 

a set of decision variables
Usually linear
Could be quadratic
Non-linear sometimes now practical

Subject to constraints on variables
set of [in]equalites
membership of (possibly discrete) sets

Mostly concerned with Mixed Integer Linear 
Programs - MILPs
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Where is Optimization Used?
Airlines crew management, scheduling, yield management
Brewing blending, production planning, distribution
Car industry production planning/organization, model launch
Chemicals/Powders distillation, production planning, distribution
Defense scheduling logistics
Electric power generation, transmission, storage, network design
Finance capital mngt, trading rules, investment selection
Food indsutry production scheduling
Forestry what to plant, where, when to harvest
Gas distribution network design and management, purchasing
Medical resource scheduling
Mining extraction planning
Oil shipping, pipeline operation, refining, distribution
Retail store grouping, purchasing
Sports scheduling fixture management
Steel Manufacturing production planning, furnace operation
Telecommunications network design, frequency selection
Water storage management, waste management
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Common Optimization Tasks
Those were some of the areas I in which I worked

Almost all industries and many government agencies

Optimization tasks include:
(intermediate) product/material processing
yield management
transport/distribution
organization/design
planning
scheduling

Helpful to classify models according to their time 
horizons
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Model Time Horizons: Short Term

A week or day or even less
scheduling/operation – do it now
very accurate
engineering activity
easy to sell
hard to do – competing technology, e.g.

constraint programming
heuristics

Tactical
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Model Time Horizons: Medium Term

Typically a month
e.g. refinery/production planning
engineering/management activity
less accurate
not-so-easy-to-sell
easier to do
sometimes embedded in culture e.g. refinery 

planning

Effective operational/management tool 
despite limitations of inaccuracy
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Model Time Horizons: Long Term

Typically a year or more
Design, e.g.

telecomms /gas/electricity networks
distribution

Investment
Hard to sell
Easy(ier) to do

Huge benefits

Strategic
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What Use is Optimization?

Short term
Tells you what to do

Medium term
Gives you an idea

Long term
Informs strategioes

Analyzes data and gives control

Only ‘inteligelligent’ (logic based) way of stress 
testing data
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Simple Example: Wire Pulling
BICC factory in Liverpool, UK

Processes 8mm copper rod through series of dies 
and coats them with varnish

Produces drums of wire for use in electrical industry, 
typically motor manufacturers

Simple annual model looked at fulfillment of orders

Some cost several times more than others
“get rid of Black and Decker”

$8M annual loss became $5M profit
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The Mathematical Model (MILP)

Minimize (over x): cTx

Subject to:

  Ax = b

  l £ x £ u

  xj Î Z, some j

  x, c, l, u Î Rn; b Î Rm; A Î Rm x n

Can have more exotic integrality requirements
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How To Solve It

Presolve

Solve LP relaxation

Add cuts                        restart

Branch and Cut

Run heuristics at all stages

Stop:
• when incumbent solution sufficiently close to 

best possible one (“best bound”), say 0.01%
• maximum time
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How To Solve It: Presolve

Successively tighten variable and row bounds
e.g. x1 + x2 £ 10; 0 £ x1 £ 4; 0 £ x2 £ 5
     Þ x1 + x2 £ 9, remove the row
   x1 + x2 £  2; 1 £  x1 £ 2; 1 £ x2 £ 2
     Þ x1 £ 1, x2 £ 1 fix (remove) x1 and x2

Remove duplicate variables and rows

Aggregate: e.g. - x1 + x2 + x3 = 0; xi ³ 0
Þ replace x1 by (x2 + x3) everywhere

Other reductions possible, for example:
use dual (cost) arguments to tighten variable bounds
infer and tighten dual bounds, remove rows 13



How To Solve It: Presolve

Integer tighten variable bounds and rows
e.g. x £ 2.4;  x Î Z Þ x £ 2

Tighten matrix coefficients
x - 100 d £ 0; d Î {0,1}; x £ 50 Þ x - 50 d £ 0

Other integer reductions/changes possible

Repeat
One (set of) reductions enables another
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How To Solve It: The LP relaxation

Relax the integrality conditions

Solve with primal or dual simplex or barrier 
(interior point) method and cross-over

Best method depends on:
whether have some kind of starting solution
hardware characteristics
the LP itself

Do several methods simultaneously 
“concurrent solve”
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How To Solve It: Cutting

Make the LP feasible region closer to the 
convex hull if the MIP

This is the smallest convex region that 
contains all the integer feasible points

If could actually derive convex hull, would 
only need to solve the LP

Example: 2 integer variable model
LP feasible region (green lines)
integer feasible region (red spots) like:
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MIP Feasible Regaion
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Convex Hull
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Cutting

“Snip” pieces away from feasible region

Cuts derived from the constraints.
e.g.    4x1 + 3x2  £ 5; xi ³ 0 and integer
        Þ x1 + x2 £ 1

Many different methods, some use multiple 
constraints

Look around current solution to “cut” LP to 
derive new cuts

More cuts make the LP harder to solve
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Branch and Bound

                                                 95        x1=2.5, x2=1.1
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Branch and Bound

                                                 95        x1=2.5, x2=1.1

                               x1 ≤ 2                         x1 ³ 3

x1=2, x2=1.7          94
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Branch and Bound

                                                 95        x1=2.5, x2=1.1
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Branch and Bound

                                                 95        x1=2.5, x2=1.1
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Branch and Cut

Nodes form an (upside down) tree

Maximum number of nodes is 2n if we have n 
binary variables – can get large

Effective to generate cuts at nodes and ‘lift’ 
them so as to be cuts for the whole tree

Can parallelize the tree search

Effective to re-start when get new good 
incumbent for fresh presolve
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Heuristics

Methods for getting an integer feasible 
solution quickly

Many techniques
diving
rounding
RINS, etc.

Prunes the tree

Good incumbent helps make better 
decisions

branching
start for next heuristic, etc. 27



Evolution of Optimization
1950-1970 LPs mainframes Primal 

Simplex
100-1000 row 
models

1970s MIP 
begins

+ Mini-
computers

Branch and 
bound

1000+ row 
models

1980s + workstations
 and PCs

Simple cuts End of ‘white 
coats’

1990s Intel/AMD 
Servers
Powerful PCs

Branch-and-
cut
Heuristics

Big Bang

2000s Multi-
processing
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Some Key LP/MILP Methods
Began Who First Software
1947 Introduced LP (Primal simplex) Dantzig
1951 Computer impl. of simplex algorithm National Bureau of Standards
1954 Dual simplex Lemke
1957 Cutting plane algorithms Gomory
1960 Branch and Bound Land & Doig LP/90/94 (1965)
1972 Sparse updating Forrest & Tomlin UMPIRE
1973 Better simplex pivot choice Harris UMPIRE
1987 Effective Root Cuts Wolsey, Chvátal,.. CPLEX, Xpress
1992 Effective dual simplex Bixby CPLEX
1992 Barrier (interior point) methed Marsden, Lustig OB1, CPLEX
1993 Presolve CPLEX, Xpress
1995 Super-sparsity Laundy Xpress
1996 Parallel branch and bound Laundy Xpress
2000 Useful Heuristics CPLEX
2000 Probing CPLEX
2005 Branch and Cut CPLEX
2007 MIP restarts CPLEX
2014 LP folding Grohe et al. CPLEX, Xprs,Gurobi29



Observations About LP/MIP Development
First LP was solved by pencil-and-paper

7 const, 77 vars and took 120 days (Laderman, 1947)

Theory often appeared before effective implementation
until 1992
cuts work in literature years before implemented commercially

Reluctance to publish post 1992

Large differences made by incremental developments

Many people contributed, not just ones mentioned before, e.g.
 Karmarkar did first efficient interior point method in 1984, Terlaky 

subsequently made major contibutions
Many people worked on cutting planes: Van Roy, Balas, .. 

Usability largely depends on modeling software
Xpress LP-Model (Ashford) was the first commercially available in 1983
Followed by GAMS, then AMPL, OPL, MPL, etc. 30



Some Commercial LP/MIP Software

Date Software Vendor
1963 LP/90/94 CEIR LP
1965 MPS/360 IBM LP
1972 MPSX/370 IBM LP, MIP from 1974
1974 UMPIRE CEIR, Scicon MIP
1976 Sciconic Scicon MIP
1984 Xpress Dash Assoc, then FICO LP, MIP from 1989
1991 CPLEX CPLEX, then IBM MIP
2009 Gurobi Gurobi MIP
2015 ODH Optimization Direct MIP
2021 COPT Cardinal Software MIP
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Some Typical Hardware

Date Computer Type
Bits 

(Addr)
Max 

Memory Cores
Single 

Core Perf
1964 IBM/360 Mainframe 32 (24) 16MB 1 0.01165
1970 IBM/370 Mainframe 32 (24) 64MB 1 0.4458
1974 Intel 8080 PC 8(16) 64KB 1 0.02 *
1979 DEC VAX 11/780 Mini 32(32) 3MB 1 1
1983 Intel 8086/8087 PC 16(20) 2MB 1 0.25
1987 IBM PS/2 80 PC 32(32) 4MB 1 2.15
1998 Intel Xeon Server 64(64) 4GB 1 623
2001 Intel Pentium 4 PC 32(32) 2GB 1 2495
2008 Intel i7-4790K PC 64(64) 32GB 4 7549
2015 Intel Xeon E5 Server 64(64) 2TB 24 6113

CPU Price Performance 1944-2003 - John McCallum
cpu.userbenchmark.com
* Estimated
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Observations About Hardware
‘Big Bang’ occurred when clock-time-to-solve on very 

cheap hardware matched typical mainframe:1987 
with IBM PS/2-80 (Intel 386/387)

The hardware drives the maths

Computers don’t speed up uniformly – some operations 
speed up more than others

FP multiply was 4300 X faster † on Intel Pentium 4 than IBM 
PS/2, but memory access only 2 X faster‡

Now constrained by bus speeds – a real bottleneck for 
parallel processing

Rate of improvement now slow
Effort has gone in to bit-coin mining and AI

† 35,000 X faster with vector facility
‡ if the L2 cache is missed
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CPLEX Performance (2009-2018)

0

2

4

6

8

10

12

14

0

50

100

150

200

250

300

350

400

12.1
(2009)

12.2
(2010)

12.4
(2011)

12.5.0
(2012)

12.6.0
(2013)

12.6.1
(2014)

12.6.3
(2015)

12.7.0
(2016)

12.8.0
(2017)

12.9.0
(2018)

to
ta

l s
pe

ed
up

nu
m

be
r o

f t
im

eo
ut

s

Date: 26 October 2018
Testset: MILP: 4061 models
Machine: Intel X5650 @ 2.67GHz, 24 GB RAM, 12 threads, deterministic
Timelimit: 10,000 sec

³ 1000 sec

³ 100 sec

³ 10sec
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Gurobi Performance (2009-2024)

Time limit: 10,000 sec.
Intel Xeon CPU E3-1240 v5 @ 3.50GHz
4 cores, 8 hyper-threads
32 GB RAM

Test set has 7766 models:
- 714 discarded due to inconsistent answers
- 2124 discarded that none of the versions can solve
- speed-up measured on >100s bracket: 2892 models
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The Cutting Edge
Non-Linear

Quadratic objectives and constraint handling now mature 
(MIQCQP)

Functions of a single argument, f(x) where x Î R have been 
approximated for decades and now some can be handled 
internally by solver

Can even get globally optimal solutions to non-convex models 
with commercial software

Parallel processing
Multi-machine solving possible though not popular, but
Vector processing in barrier now transparent and ubiquitous, as is
Multi-threading during most of the solve, esp. branch and cut

Novel methods
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The Cutting Edge: Multi-threading

Would like to go n X faster with n cores, but 
reality is harder

Useful work division limited by inherently 
sequential nature of optimization methods

presolve ® root solve ® cutting ® search
although parallelization possible within methods

Tasks need to mutually communicate

Tasks compete for resources
Cores, memory bus capacity
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Determinism

Threads must be synchronized to get 
deterministic behavior

Synchronization costs time at
• Sync points; or
• Accessing information pool

Depends on your model, hardware, program 
quality and number of threads
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Determinism: Costs

Typically using 8 threads to solve a MIP on a 4 
core SMT (hyper-threaded) workstation costs 
~ 20%

Cost rises with number of threads
  25 user models, 2hr time limit, ODH|CPLEX

Threads Computer Cores Synchronization time
Average Spread Max

8 i7-4790K 4 19% 11% 50%
12 E5-2690 v3 24 23% 12% 59%
24 E5-2690 v3 24 30% 15% 67%
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Synchronization
Can have specific synchronization points, but 

better to synchronize the passing of 
information between the threads

Need deterministic measure of work (“time”)
“CPU time” not deterministic
Use retired instructions or some counter

Variability in
Actual work done for a given count

varies according to model size and algorithmic activity
Resource allocation to threads

Work measure varies 7% - 60% 40



Synchronization
Theoretically, ignoring bus contention
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Determinism: Pros and Cons

Pros: repeatability
Emotionally good to get same answer from 

repeated runs
Easier to analyze and QA models
Easier to tune solver parameters

Cons: slower
Waste computer resources
Wait longer for e.g. solution quality to be hit
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Determinism: Users
Most OR optimizer users prefer determinism

‘Performance’ users prefer non-determinism
Users of very large and/or difficult models
Meteorological modelers

o solve Navier-Stokes equations fast
o ‘determinism is for wimps’

Future is non-determinism
No way out of sync overhead
Number of cores is increasing, speed is not
Greater issue as bus (memory speeds) improve
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The Cutting Edge: New Methods: ODH

Push the envelope of what can be usefully 
optimized

Try other methods concurrently with traditional 
solver

Use available threads (cores) more effectively
Get useful information by solving smaller models

Avoid the ‘curse of dimensionality’
Example is Optimization Direct Heuristics (ODH)

Accept that with most users’ data aiming for 
0.01% accuracy (gap) is pointless
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ODH : How Does it Work?
MIP solver (CPLEX, Xpress, Gurobi) and ODH run concurrently

Information is exchanged:

                                   models
                                   solutions
                                   bounds

                                   relaxed solutions
                                   cuts                                          ODH
       MIP      Heuristics
       Solver                                                                  Engine
       

                                   solutions

45



ODHeuristics Engine
Finds a (possibly infeasible) initial solution with local search

Improves its current solution
• Decomposes original model into sub-models
• Finds better solution to sub-models (not necessarily optimal)
• phaseI or bigM if infeasible
• Each ODH thread solves its own set of sub-models
• Combines the solutions across threads
• Repeats with fresh decomposition
• Dynamically adjusts sub-model size

Decomposition
• Uses structure inferred from variable names and user-supplied 

pattern or matrix partition information; or
• Using user call-back; or
• Automatically inferred from matrix structure

46



Recent Customer Model (ODH|CPLEX)
740K binaries and 12M non-zeros
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ODH Effectiveness
Randomly selected 100 model sub-set of 850 customer 

models, Intel i4790K, 8 threads, 2 hour limit

i.e. 30% average reduction in gap

MIPLIB Open-v7 Models: public collection of 286 models 
to which an optimal solution has not been proven, 
feasible solution found to 257 models, none to 29
Proves optimality on 16 models
Finds better solutions than the ‘best known’ to 116 (45%)
Finds solutions to 5 models where no solution found before
Intel Xeon E5-2690v3, 16 threads, 2 hour limit

ODH|CPLEX CPLEX
Solved 23 20
Feasible 88 84
Average gap 19% 27%
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Applications that push the envelope

ODH is necessary for applications in areas as diverse as 
satellite management, forestry, retail  and fiber optic 
network design.

Recently (2022) used for redistricting:
Models exceptionally large:

   20M cons, 35M (5M binary) vars and 130M elts is midsized
   Have used on models 5X larger. 

Usually have a (possibly poor) starting solution
Aim for 5% gap
Run times up to 8 hours on 24 core Xeon E5-2690v3
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Michigan Congressional Districts 2010
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Optimized Michigan Congressional Districts
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Optimization: The Future

Non-linear and global optimization will mature

Concurrent co-working with alternative technologies
Heavy primal heuristics, e.g. ODH
Constraint programming, etc.
Abandon determinism
Especially if bus speeds improve

More automation in model building with AI
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Conclusions

Looked at what optimization is

How models are solved and how methods 
and hardware have evolved over last 77 
years

Given an idea of methods which are 
pushing the envelope of its use

Looked at what the future might hold
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Thanks for listening

Robert Ashford
rwa@optimizationdirect.com
www.optimizationdirect.com
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