OPTIMIZATION: PAST, PRESENT AND FUTURE

Robert Ashford Optimization Direct Inc.

INFORMS International Meeting 2024

Summary

What is Optimization, where is it used and what use is it?

The Mathematical Model (MILP) and how to solve it

Evolution of Optimization and the hardware on which it runs

Solver Performance

The Cutting Edge

Multi-threading

New Methods, e.g. ODHeuristics

Applications that push the envelope

Optimization: The Future

What is Optimization?

Minimization (or maximization) of function of a set of decision variables

Usually linear

Could be quadratic

Non-linear sometimes now practical

Subject to constraints on variables

set of [in]equalites

membership of (possibly discrete) sets

Mostly concerned with Mixed Integer Linear Programs - MILPs

Where is Optimization Used?

Airlines

Brewing

Car industry

Chemicals/Powders

Defense

Electric power

Finance

Food indsutry

Forestry

Gas distribution

Medical

Mining

Oil

Retail

Sports scheduling

Steel Manufacturing

Telecommunications

Water

crew management, scheduling, yield management

blending, production planning, distribution

production planning/organization, model launch

distillation, production planning, distribution

scheduling logistics

generation, transmission, storage, network design

capital mngt, trading rules, investment selection

production scheduling

what to plant, where, when to harvest

network design and management, purchasing

resource scheduling

extraction planning

shipping, pipeline operation, refining, distribution

store grouping, purchasing

fixture management

production planning, furnace operation

network design, frequency selection

storage management, waste management

Common Optimization Tasks

Those were some of the areas I in which I worked

Almost all industries and many government agencies

Optimization tasks include:

(intermediate) product/material processing

yield management

transport/distribution

organization/design

planning

scheduling

Helpful to classify models according to their time horizons

Model Time Horizons: Short Term

```
A week or day or even less
  scheduling/operation – do it now
  very accurate
  engineering activity
  easy to sell
  hard to do – competing technology, e.g.
    constraint programming
    heuristics
```

Tactical

Model Time Horizons: Medium Term

Typically a month e.g. refinery/production planning engineering/management activity less accurate not-so-easy-to-sell easier to do sometimes embedded in culture e.g. refinery planning

Effective operational/management tool despite limitations of inaccuracy

Model Time Horizons: Long Term

```
Typically a year or more
  Design, e.g.
    telecomms /gas/electricity networks
    distribution
  Investment
  Hard to sell
  Easy(ier) to do
```

Huge benefits

Strategic

What Use is Optimization?

Short term

Tells you what to do

Medium term Gives you an idea

Long term
Informs strategioes

Analyzes data and gives control

Only 'inteligelligent' (logic based) way of stress testing data

Simple Example: Wire Pulling

BICC factory in Liverpool, UK

Processes 8mm copper rod through series of dies and coats them with varnish

Produces drums of wire for use in electrical industry, typically motor manufacturers

Simple annual model looked at fulfillment of orders

Some cost several times more than others "get rid of Black and Decker"

\$8M annual loss became \$5M profit

The Mathematical Model (MILP)

Minimize (over x): c^Tx

Subject to:

$$Ax = b$$

$$1 \le x \le u$$

$$X_j \in \mathcal{Z}$$
, some j

$$X, C, I, U \in \mathcal{R}^n$$
; $b \in \mathcal{R}^m$; $A \in \mathcal{R}^{m \times n}$

Can have more exotic integrality requirements

How To Solve It

Presolve Solve LP relaxation Add cuts restart Branch and Cut

Run heuristics at all stages

Stop:

- when incumbent solution sufficiently close to best possible one ("best bound"), say 0.01%
- maximum time

How To Solve It: Presolve

Successively tighten variable and row bounds

e.g.
$$x_1 + x_2 \le 10$$
; $0 \le x_1 \le 4$; $0 \le x_2 \le 5$
 $\Rightarrow x_1 + x_2 \le 9$, remove the row
$$x_1 + x_2 \le 2$$
; $1 \le x_1 \le 2$; $1 \le x_2 \le 2$

$$\Rightarrow x_1 \le 1$$
, $x_2 \le 1$ fix (remove) x_1 and x_2

Remove duplicate variables and rows

Aggregate: e.g. - $x_1 + x_2 + x_3 = 0$; $x_i \ge 0$ \Rightarrow replace x_1 by $(x_2 + x_3)$ everywhere

Other reductions possible, for example: use dual (cost) arguments to tighten variable bounds infer and tighten dual bounds, remove rows

How To Solve It: Presolve

Integer tighten variable bounds and rows

e.g.
$$x \le 2.4$$
; $x \in \mathcal{Z} \Rightarrow x \le 2$

Tighten matrix coefficients

$$x - 100 \delta \le 0$$
; $\delta \in \{0,1\}$; $x \le 50 \Rightarrow x - 50 \delta \le 0$

Other integer reductions/changes possible

Repeat

One (set of) reductions enables another

How To Solve It: The LP relaxation

Relax the integrality conditions

Solve with primal or dual simplex or barrier (interior point) method and cross-over

Best method depends on:

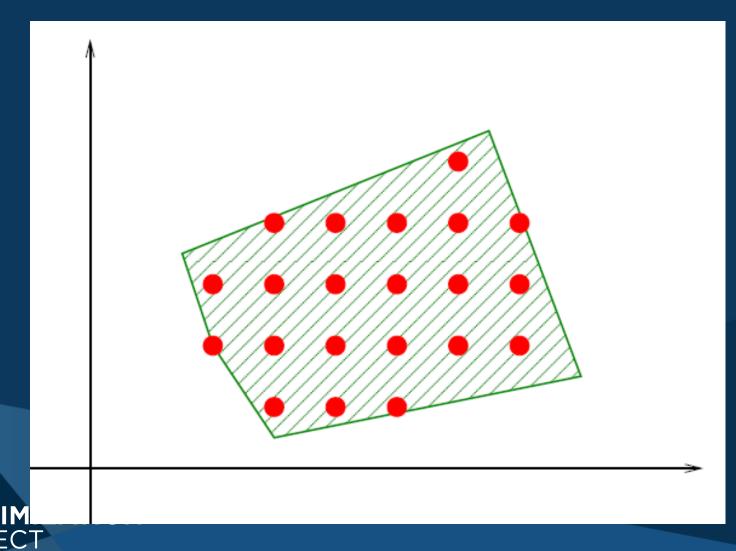
whether have some kind of starting solution hardware characteristics the LP itself

Do several methods simultaneously "concurrent solve"

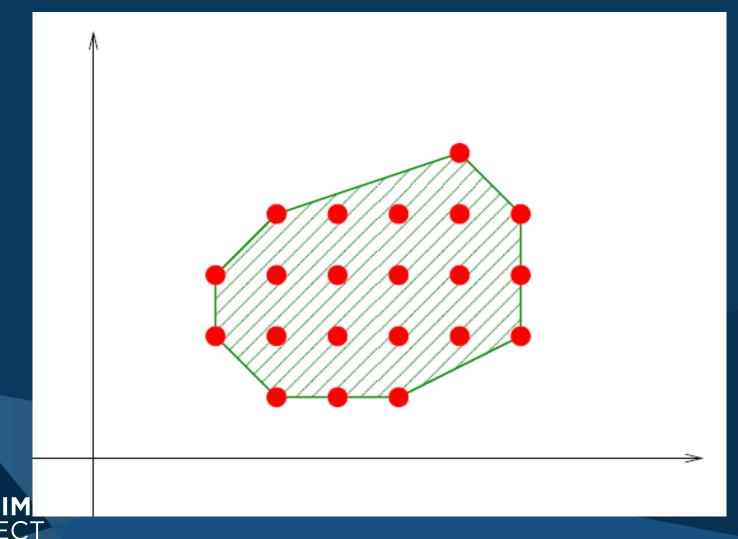
How To Solve It: Cutting

Make the LP feasible region closer to the convex hull if the MIP

This is the smallest convex region that contains all the integer feasible points


If could actually derive convex hull, would only need to solve the LP

Example: 2 integer variable model


LP feasible region (green lines)
integer feasible region (red spots) like:

MIP Feasible Regaion

Convex Hull

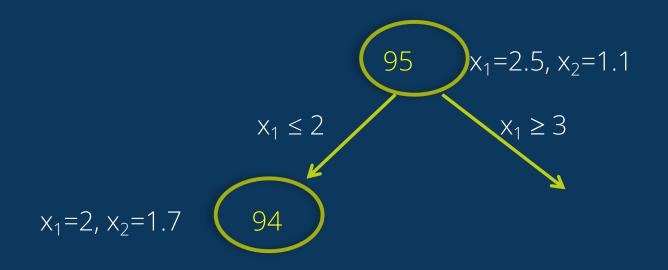
Cutting

"Snip" pieces away from feasible region

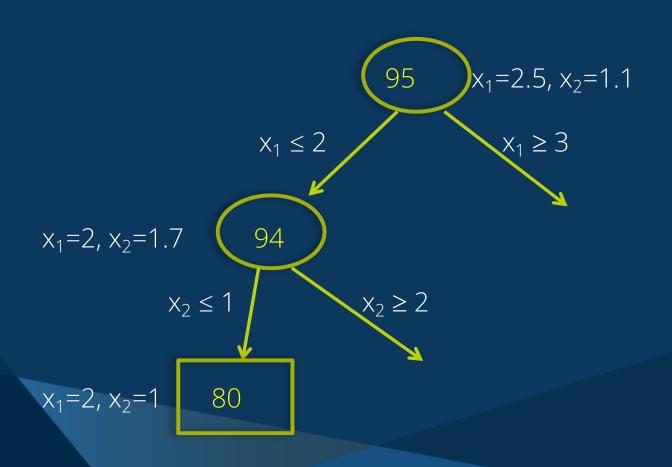
Cuts derived from the constraints.

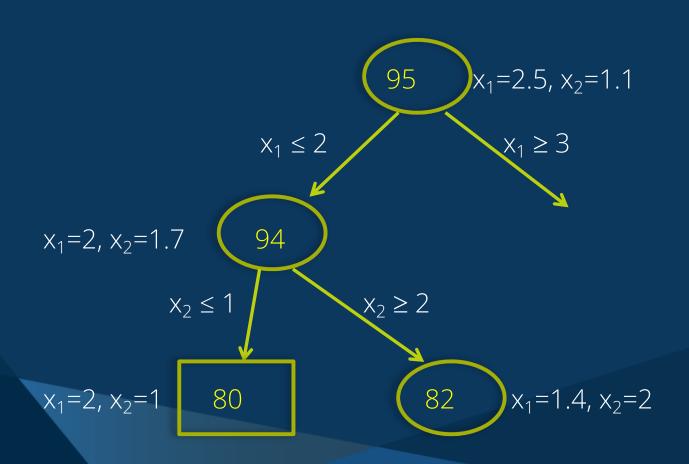
e.g.
$$4x_1 + 3x_2 \le 5$$
; $x_i \ge 0$ and integer $\Rightarrow x_1 + x_2 \le 1$

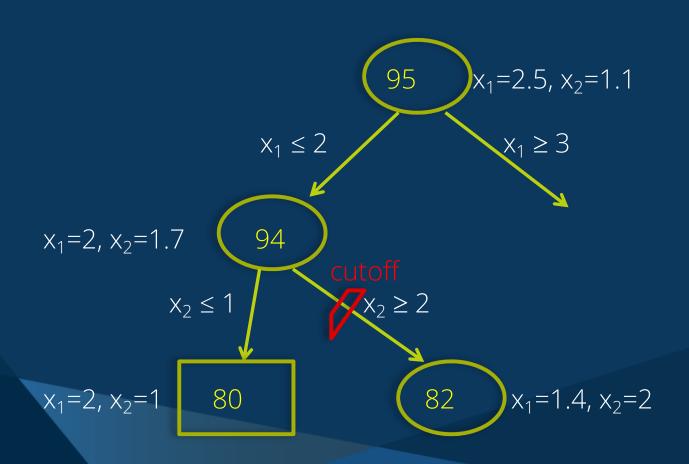
Many different methods, some use multiple constraints

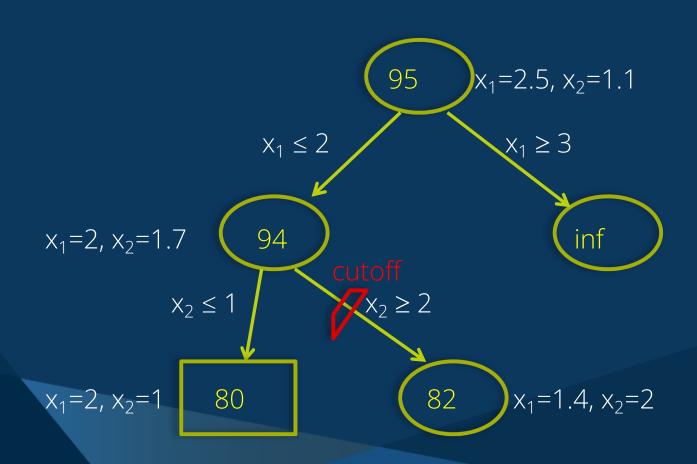

Look around current solution to "cut" LP to derive new cuts

More cuts make the LP harder to solve









Branch and Cut

Nodes form an (upside down) tree

Maximum number of nodes is 2ⁿ if we have *n* binary variables – can get large

Effective to generate cuts at nodes and 'lift' them so as to be cuts for the whole tree

Can parallelize the tree search

Effective to re-start when get new good incumbent for fresh presolve

Heuristics

Methods for getting an integer feasible solution quickly

Many techniques diving rounding RINS, etc.

Prunes the tree

Good incumbent helps make better decisions branching start for next heuristic, etc.

Evolution of Optimization

1950-1970	LPs	mainframes	Primal Simplex	100-1000 row models
1970s	MIP begins	+ Mini- computers	Branch and bound	1000+ row models
1980s		+ workstations and PCs	Simple cuts	End of 'white coats'
1990s		Intel/AMD Servers Powerful PCs	Branch-and- cut Heuristics	Big Bang
2000s		Multi- processing		

Some Key LP/MILP Methods

Began		Who	First Software
_	Introduced ID (Drive of circular)		riist Soitware
	Introduced LP (Primal simplex)	Dantzig	
1951	Computer impl. of simplex algorithm	National Bureau of	Standards
1954	Dual simplex	Lemke	
1957	Cutting plane algorithms	Gomory	
1960	Branch and Bound	Land & Doig	LP/90/94 (1965)
1972	Sparse updating	Forrest & Tomlin	UMPIRE
1973	Better simplex pivot choice	Harris	UMPIRE
1987	Effective Root Cuts	Wolsey, Chvátal,	CPLEX, Xpress
1992	Effective dual simplex	Bixby	CPLEX
1992	Barrier (interior point) methed	Marsden, Lustig	OB1, CPLEX
1993	Presolve		CPLEX, Xpress
1995	Super-sparsity	Laundy	Xpress
1996	Parallel branch and bound	Laundy	Xpress
2000	Useful Heuristics		CPLEX
2000	Probing		CPLEX
2005	Branch and Cut		CPLEX
2007	MIP restarts		CPLEX
2014	LP folding	Grohe et al.	CPLEX, Xprs,Gurobi

Observations About LP/MIP Development

First LP was solved by pencil-and-paper 7 const, 77 vars and took 120 days (Laderman, 1947)

Theory often appeared before effective implementation until 1992 cuts work in literature years before implemented commercially

Reluctance to publish post 1992

Large differences made by incremental developments

Many people contributed, not just ones mentioned before, e.g. Karmarkar did first efficient interior point method in 1984, Terlaky subsequently made major contibutions

Many people worked on cutting planes: Van Roy, Balas, ...

Usability largely depends on modeling software

Xpress LP-Model (Ashford) was the first commercially available in 1983

Followed by GAMS, then AMPL, OPL, MPL, etc.

Some Commercial LP/MIP Software

Date	Software	Vendor	
1963	LP/90/94	CEIR	LP
1965	MPS/360	IBM	LP
1972	MPSX/370	IBM	LP, MIP from 1974
1974	UMPIRE	CEIR, Scicon	MIP
1976	Sciconic	Scicon	MIP
1984	Xpress	Dash Assoc, then FICO	LP, MIP from 1989
1991	CPLEX	CPLEX, then IBM	MIP
2009	Gurobi	Gurobi	MIP
2015	ODH	Optimization Direct	MIP
2021	COPT	Cardinal Software	MIP

Some Typical Hardware

Date	Computer	Туре	Bits (Addr)	Max Memory	Cores	Single Core Perf
1964	IBM/360	Mainframe	32 (24)	16MB	1	0.01165
1970	IBM/370	Mainframe	32 (24)	64MB	1	0.4458
1974	Intel 8080	PC	8(16)	64KB	1	0.02 *
1979	DEC VAX 11/780	Mini	32(32)	3MB	1	1
1983	Intel 8086/8087	PC	16(20)	2MB	1	0.25
1987	IBM PS/2 80	PC	32(32)	4MB	1	2.15
1998	Intel Xeon	Server	64(64)	4GB	1	623
2001	Intel Pentium 4	PC	32(32)	2GB	1	2495
2008	Intel i7-4790K	PC	64(64)	32GB	4	7549
2015	Intel Xeon E5	Server	64(64)	2TB	24	6113

CPU Price Performance 1944-2003 - John McCallum cpu.userbenchmark.com

^{*} Estimated

Observations About Hardware

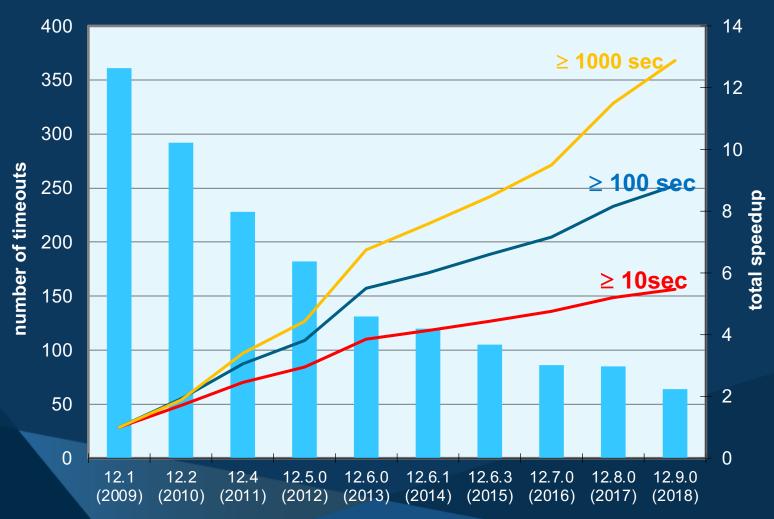
'Big Bang' occurred when clock-time-to-solve on very cheap hardware matched typical mainframe:1987 with IBM PS/2-80 (Intel 386/387)

The hardware drives the maths

Computers don't speed up uniformly – some operations speed up more than others

FP multiply was 4300 X faster † on Intel Pentium 4 than IBM PS/2, but memory access only 2 X faster‡

Now constrained by bus speeds – a real bottleneck for parallel processing


Rate of improvement now slow

Effort has gone in to bit-coin mining and Al

^{† 35,000} X faster with vector facility

[‡] if the L2 cache is missed

CPLEX Performance (2009-2018)

Date: 26 October 2018
Testset: MILP: 4061 models

Machine: Intel X5650 @ 2.67GHz, 24 GB RAM, 12 threads, deterministic

Timelimit: 10,000 sec

Gurobi Performance (2009-2024)

Time limit: 10,000 sec. Intel Xeon CPU E3-1240 v5 @ 3.50GHz 4 cores, 8 hyper-threads 32 GB RAM Test set has 7766 models:

- 714 discarded due to inconsistent answers
- 2124 discarded that none of the versions can solys
- speed-up measured on >100s bracket: 2892 models

The Cutting Edge

Non-Linear

Quadratic objectives and constraint handling now mature (MIQCQP)

Functions of a single argument, f(x) where $x \in \mathcal{R}$ have been approximated for decades and now some can be handled internally by solver

Can even get **globally optimal** solutions to non-convex models with commercial software

Parallel processing

Multi-machine solving possible though not popular, but Vector processing in barrier now transparent and ubiquitous, as is Multi-threading during most of the solve, esp. branch and cut

Novel methods

The Cutting Edge: Multi-threading

Would like to go *n* X faster with *n* cores, but reality is harder

Useful work division limited by inherently sequential nature of optimization methods $presolve \rightarrow root\ solve \rightarrow cutting \rightarrow search$ although parallelization possible within methods

Tasks need to mutually communicate

Tasks compete for resources

Cores, memory bus capacity

Determinism

Threads must be synchronized to get deterministic behavior

Synchronization costs time at

- Sync points; or
- Accessing information pool

Depends on your model, hardware, program quality and number of threads

Determinism: Costs

Typically using 8 threads to solve a MIP on a 4 core SMT (hyper-threaded) workstation costs ~ 20%

Cost rises with number of threads

25 user models, 2hr time limit, ODH | CPLEX

Threads	Computer	Cores	Synchronization time		
			Average	Spread	Max
8	i7-4790K	4	19%	11%	50%
12	E5-2690 v3	24	23%	12%	59%
24	E5-2690 v3	24	30%	15%	67%

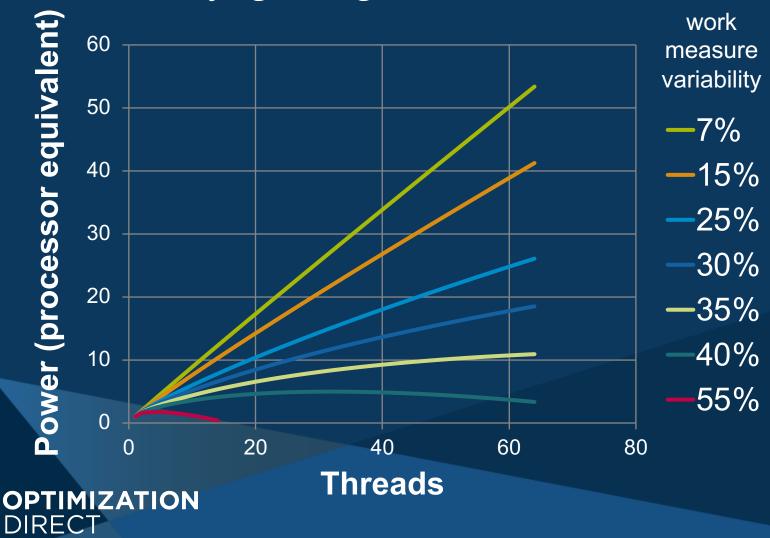
Synchronization

Can have specific synchronization points, but better to synchronize the passing of information between the threads

Need deterministic measure of work ("time")

"CPU time" not deterministic

Use retired instructions or some counter


Variability in

Actual work done for a given count varies according to model size and algorithmic activity Resource allocation to threads

Work measure varies 7% - 60%

Synchronization

Theoretically, ignoring bus contention

Determinism: Pros and Cons

Pros: repeatability

Emotionally good to get same answer from repeated runs

Easier to analyze and QA models

Easier to tune solver parameters

Cons: slower

Waste computer resources

Wait longer for e.g. solution quality to be hit

Determinism: Users

Most OR optimizer users prefer determinism

- 'Performance' users prefer non-determinism Users of very large and/or difficult models Meteorological modelers
 - solve Navier-Stokes equations fast
 - 'determinism is for wimps'

Future is non-determinism

No way out of sync overhead

Number of cores is increasing, speed is not

Greater issue as bus (memory speeds) improve

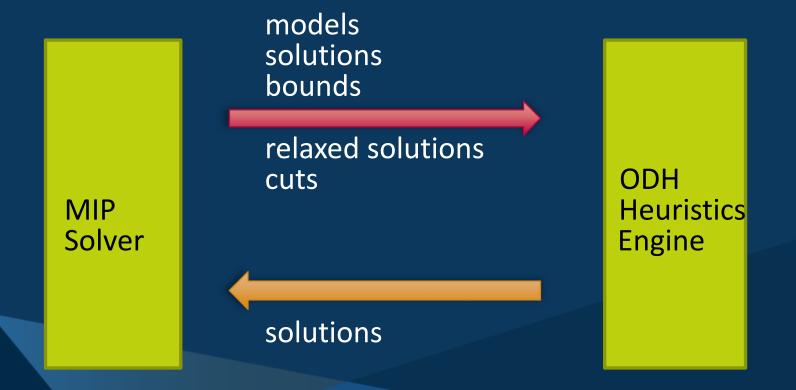
The Cutting Edge: New Methods: ODH

Push the envelope of what can be usefully optimized

Try other methods concurrently with traditional solver

Use available threads (cores) more effectively

Get useful information by solving smaller models Avoid the 'curse of dimensionality'


Example is Optimization Direct Heuristics (ODH)

Accept that with most users' data aiming for 0.01% accuracy (gap) is pointless

ODH: How Does it Work?

MIP solver (CPLEX, Xpress, Gurobi) and ODH run concurrently Information is exchanged:

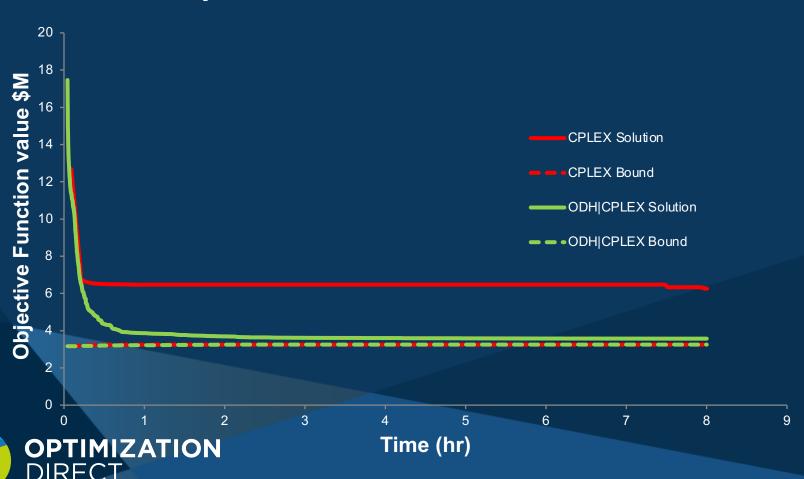
ODHeuristics Engine

Finds a (possibly infeasible) **initial solution** with local search

Improves its current solution

- Decomposes original model into sub-models
- Finds better solution to sub-models (not necessarily optimal)
- phasel or bigM if infeasible
- Each ODH thread solves its own set of sub-models
- Combines the solutions across threads
- Repeats with fresh decomposition
- Dynamically adjusts sub-model size

Decomposition


- Uses structure inferred from variable names and user-supplied pattern or matrix partition information; or
- Using user call-back; or
- Automatically inferred from matrix structure

Recent Customer Model (ODH | CPLEX)

740K binaries and 12M non-zeros

Objective Function Value versus Time

ODH Effectiveness

Randomly selected 100 model sub-set of 850 customer models, *Intel i4790K, 8 threads, 2 hour limit*

	ODH CPLEX	CPLEX
Solved	23	20
Feasible	88	84
Average gap	19%	27%

i.e. 30% average reduction in gap

MIPLIB Open-v7 Models: public collection of 286 models to which an optimal solution has not been proven, feasible solution found to 257 models, none to 29

Proves optimality on 16 models

Finds better solutions than the 'best known' to 116 (45%)
Finds solutions to 5 models where no solution found before

Intel Xeon E5-2690v3, 16 threads, 2 hour limit

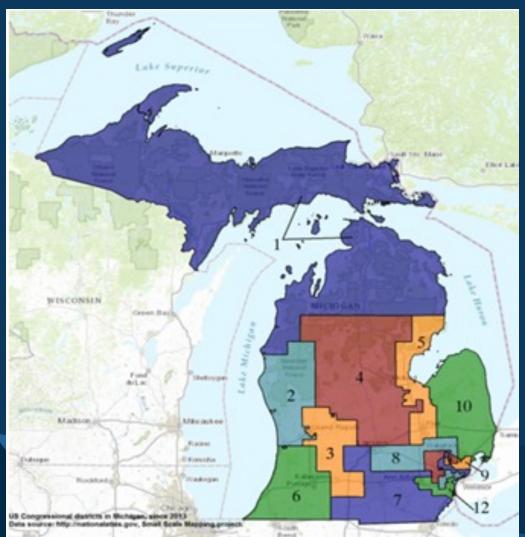
Applications that push the envelope

ODH is necessary for applications in areas as diverse as satellite management, forestry, retail and fiber optic network design.

Recently (2022) used for redistricting:

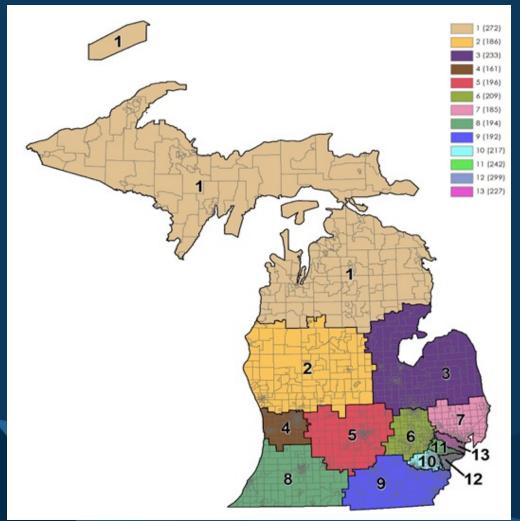
Models exceptionally large:

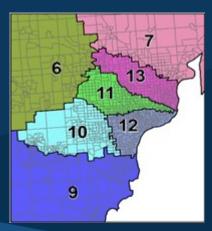
20M cons, 35M (5M binary) vars and 130M elts is midsized Have used on models 5X larger.


Usually have a (possibly poor) starting solution

Aim for 5% gap

Run times up to 8 hours on 24 core Xeon E5-2690v3


Michigan Congressional Districts 2010



Optimized Michigan Congressional Districts

Optimization: The Future

Non-linear and global optimization will mature

Concurrent co-working with alternative technologies

Heavy primal heuristics, e.g. ODH

Constraint programming, etc.

Abandon determinism

Especially if bus speeds improve

More automation in model building with Al

Conclusions

Looked at what optimization is

How models are solved and how methods and hardware have evolved over last 77 years

Given an idea of methods which are pushing the envelope of its use

Looked at what the future might hold

Thanks for listening

Robert Ashford
rwa@optimizationdirect.com
www.optimizationdirect.com

