v

OPTIMIZED
FiMaMClalL SYSTEMS

Modeling Performance

LR AR RRE

v

In addition to solving the model quickly, getting the QRTIMIZED
answer also requires building the model quickly

= In this section we present some methods used to build models using docplex in
python.

= The constraint we are building is for a classroom scheduling model. In this model,
we cannot have any potential sections overlap at any time for a specific room.

*Tscoone Cs < lIs € 0O\t = lls € o(O\tll Tucoqe) Cu ¥ t € time periods

v

We apply three approaches SRTIMIZED

=\We want to use as much out-of-the box functionality as possible

e Looping: In looping we iterate through lists and add variables to create the constraints
» Pandas: We leverage the pandas package to do the looping with single commands and group
the data together

e Multiprocessing: We use the python multiprocessing package to send multiple jobs to run in
parallel.

=\We randomly generate three potential sections (start times) for 10,000 different
classes and then for 1,000 different classes. We build the constraint to ensure
there are no overlaps.

= The timing does not include the time required to create the data structures.

.

Lﬁ"DFﬁr“g OPTIMIZED

FiMarMNCIAaL SYSTEMS

for t 1in potentialTimes.timelID.unique () :
#find the times that overlap with the given time

lhsVars = []

for 1dx, row in overlappingTimes|[(overlappingTimes.timeID x == t) &
(overlappingTimes.timelID y != t)].iterrows():

for idx2, row2 in potentialTimes|[potentialTimes.timelD ==
row.timeID y].iterrows():

lhsVars.append (row2.scheduleSection)

rhsVars = []

for 1dx3, row3 1n potentialTimes|[potentialTimes.timelD ==
t].iterrows() :

rhsVars.append (row3.scheduleSection)

m.add constraint (m.sum(lhsVars) <= len(lhsVars) - len(lhsVars) *
m.sum(rhsVars), 'overlap %s'%t)

Looping results

= 10,000 classes
"u=17.40
g = (.16

mn =25

= 1,000 classes

"y = 2.03
=g = 0.09
sn=2>5

v

OPTIMIZED

EEEEEEEEEEEEEEEE

.

OPTIMIZED

Pandas FiMaMCIAL SYSTEMS
gb = potentialTimes.groupby (by='timelID') .scheduleSection.sum/()

overlaps = overlappingTimes[overlappingTimes.timeID x !=
overlappingTimes.timeID y].merge (potentialTimes, how="inner',6 left on =
'"timeID y',right on='timeID')

numOverlaps = overlaps.groupby (by='timeID x') .timelID y.count ()
overlappingSections = overlaps.groupby (by='timeID x') .scheduleSection.sum()
m.add constraints ([(overlappingSections[idx] <= numOverlaps[idx] - numOverlaps[1dx]

* sections, 'overlap %s'%idx) for 1dx, sections in gb.iteritems()])

v

Pandas results OPTIMIZED

= 10,000 classes = 1,000 classes
"y = 15.02 "u = 0.27

"0 = 0.38 "0 = 0.02
"n=>5 "nm=>5

= The pandas coding is more compact, but requires getting used to creating merges
and groupbys.

= Pandas is slowed by the merge, which in this case is close to a Cartesian multiplier.

.

Multiprocessing ORTIMIZED

Create queues

task queue = Queue ()

done queue = Queue ()

Start worker processes
for 1 in range (NUMBER OF PROCESSES) :
Process (target=worker, args=(task queue, done queue)) .start ()

NUM TASKS = 0

task queue.put ((aggregate, potentialTimes[['timeID', 'varNames’]], 'timelID’,
'varNames’, 'gb')))

gb = 0
NUM TASKS += 1

task queue.put ((merge, (overlappingTimes[overlappingTimes.timeID x !=
overlappingTimes.timelID v],potentialTimes|[["timeID', '"varNames']], "inner', "timeID v'

Multiprocessing continued ORTIIMIZED
task queue.put ((merge, (overlappingTimes|[overlappingTimes.timeID x !=
overlappingTimes.timeID y], potentialTimes[['timeID', 'varNames’]],

"Inner’, 'timeID y’, 'timeID’, 'overlaps')))
overlaps = 0
NUM TASKS += 1
overlappingSections = 0
NUM TASKS += 1
numOverlaps = 0

NUM TASKS += 1

for idx 1n range (NUM TASKS) :

result = done queue.get ()
1f result[0] == 'gb':
gb = result[l].map(lambda x: m.sum(getVarList(m,x,'!"')))

1f result[0] == 'overlaps':

.

Multiprocessing continued ORTIMIZED

for idx 1n range (NUM TASKS) :

result = done queue.get ()
1if result[0] == 'gb':

gb = result[l].map(lambda x: m.sum(getVarList (m,x,"'!"')))
1f result[0] == 'overlaps':

overlaps = result[1]

task queue.put ((aggregate, (result[l], 'timelID x’, 'varNames’,
'overlappingSections')))

task queue.put ((getCount, (result[l], 'timeID x’, 'varNames’,

'numOverlaps')))
1f result[0] == 'overlappingSections':
overlappingSections = result[l] .map (lambda x:

m.sum(getVarList (m,x,"'!"')))
1f result[0] == 'numOverlaps':

numOverlaps = result[1]

Multiprocessing continued

m.add constraints ([(overlappingSections[i1dx]
* sections, 'overlap %s'%idx) for 1idx,

<= numOverlaps[idx]

- numOverlaps[i1dx]

sections 1n gb.iteritems ()])

v

Multiprocessing results SRTIMIZED
= 10,000 classes = 1,000 classes

" = 2.90 "y =1.70

"0 = 0.23 =g = 0.03

"n=>5 "n=>5

= Multiprocessing requires far more coding, but can leverage more of the processors
on your system.

= Docplex variable objects cannot be pickled (used to store until the multiprocessing
can pick up the data to process), so the variable names must be passed back and
forth. As a result, packages such as dask will not work to aggregate docplex
variables in a DataFrame.

= There is some overhead in creating the queues and starting the processes, so it is
not always the fastest.

v

Conclusion S TIMIE RS

EEEEEEEEEEEEEEEE

= Docplex supports many ways to build model constraints.
= It may be easiest to start with an intuitive method and migrate to a fast method

= | everage python packages such as pandas

