
Modeling Performance

In addition to solving the model quickly, getting the
answer also requires building the model quickly

▪In this section we present some methods used to build models using docplex in
python.

▪The constraint we are building is for a classroom scheduling model. In this model,
we cannot have any potential sections overlap at any time for a specific room.

▪σ𝑠∈𝑜 𝑡 \t𝐶𝑠 ≤ 𝑠 ∈ 𝑜 𝑡 \t − 𝑠 ∈ 𝑜 𝑡 \t σ𝑢∈𝜕(𝑡)𝐶𝑢 ∀ 𝑡 ∈ 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

We apply three approaches

▪We want to use as much out-of-the box functionality as possible
• Looping: In looping we iterate through lists and add variables to create the constraints
• Pandas: We leverage the pandas package to do the looping with single commands and group

the data together
•Multiprocessing: We use the python multiprocessing package to send multiple jobs to run in

parallel.

▪We randomly generate three potential sections (start times) for 10,000 different
classes and then for 1,000 different classes. We build the constraint to ensure
there are no overlaps.

▪The timing does not include the time required to create the data structures.

Looping

for t in potentialTimes.timeID.unique():

#find the times that overlap with the given time

lhsVars = []

for idx, row in overlappingTimes[(overlappingTimes.timeID_x == t) &

(overlappingTimes.timeID_y != t)].iterrows():

for idx2, row2 in potentialTimes[potentialTimes.timeID ==

row.timeID_y].iterrows():

lhsVars.append(row2.scheduleSection)

rhsVars = []

for idx3, row3 in potentialTimes[potentialTimes.timeID ==

t].iterrows():

rhsVars.append(row3.scheduleSection)

m.add_constraint(m.sum(lhsVars) <= len(lhsVars) - len(lhsVars) *

m.sum(rhsVars), 'overlap_%s'%t)

Looping results

▪10,000 classes

▪𝜇 = 17.40

▪𝜎 = 0.16

▪𝑛 = 5

▪1,000 classes

▪𝜇 = 2.03

▪𝜎 = 0.09

▪𝑛 = 5

Pandas

gb = potentialTimes.groupby(by='timeID').scheduleSection.sum()

overlaps = overlappingTimes[overlappingTimes.timeID_x !=

overlappingTimes.timeID_y].merge(potentialTimes,how='inner',left_on =

'timeID_y',right_on='timeID')

numOverlaps = overlaps.groupby(by='timeID_x').timeID_y.count()

overlappingSections = overlaps.groupby(by='timeID_x').scheduleSection.sum()

m.add_constraints([(overlappingSections[idx] <= numOverlaps[idx] - numOverlaps[idx]

* sections,'overlap_%s'%idx) for idx, sections in gb.iteritems()])

Pandas results

▪10,000 classes

▪𝜇 = 15.02

▪𝜎 = 0.38

▪𝑛 = 5

▪The pandas coding is more compact, but requires getting used to creating merges
and groupbys.

▪Pandas is slowed by the merge, which in this case is close to a Cartesian multiplier.

▪1,000 classes

▪𝜇 = 0.27

▪𝜎 = 0.02

▪𝑛 = 5

Multiprocessing

Create queues

task_queue = Queue()

done_queue = Queue()

Start worker processes

for i in range(NUMBER_OF_PROCESSES):

Process(target=worker, args=(task_queue, done_queue)).start()

NUM_TASKS = 0

task_queue.put((aggregate, potentialTimes[['timeID','varNames’]], 'timeID’,

'varNames’, 'gb')))

gb = 0

NUM_TASKS += 1

task_queue.put((merge, (overlappingTimes[overlappingTimes.timeID_x !=

overlappingTimes.timeID_y],potentialTimes[['timeID','varNames']],'inner','timeID_y'

,'timeID','overlaps')))

Multiprocessing continued

task_queue.put((merge, (overlappingTimes[overlappingTimes.timeID_x !=

overlappingTimes.timeID_y], potentialTimes[['timeID','varNames’]],

'inner’, 'timeID_y’, 'timeID’, 'overlaps')))

overlaps = 0

NUM_TASKS += 1

overlappingSections = 0

NUM_TASKS += 1

numOverlaps = 0

NUM_TASKS += 1

for idx in range(NUM_TASKS):

result = done_queue.get()

if result[0] == 'gb':

gb = result[1].map(lambda x: m.sum(getVarList(m,x,'!')))

if result[0] == 'overlaps':

Multiprocessing continued

for idx in range(NUM_TASKS):

result = done_queue.get()

if result[0] == 'gb':

gb = result[1].map(lambda x: m.sum(getVarList(m,x,'!')))

if result[0] == 'overlaps':

overlaps = result[1]

task_queue.put((aggregate, (result[1], 'timeID_x’, 'varNames’,

'overlappingSections')))

task_queue.put((getCount, (result[1], 'timeID_x’, 'varNames’,

'numOverlaps')))

if result[0] == 'overlappingSections':

overlappingSections = result[1].map(lambda x:

m.sum(getVarList(m,x,'!')))

if result[0] == 'numOverlaps':

numOverlaps = result[1]

Multiprocessing continued

m.add_constraints([(overlappingSections[idx] <= numOverlaps[idx] - numOverlaps[idx]

* sections,'overlap_%s'%idx) for idx, sections in gb.iteritems()])

Multiprocessing results

▪10,000 classes

▪𝜇 = 2.90

▪𝜎 = 0.23

▪𝑛 = 5

▪Multiprocessing requires far more coding, but can leverage more of the processors
on your system.

▪Docplex variable objects cannot be pickled (used to store until the multiprocessing
can pick up the data to process), so the variable names must be passed back and
forth. As a result, packages such as dask will not work to aggregate docplex
variables in a DataFrame.

▪There is some overhead in creating the queues and starting the processes, so it is
not always the fastest.

▪1,000 classes

▪𝜇 = 1.70

▪𝜎 = 0.03

▪𝑛 = 5

Conclusion

▪Docplex supports many ways to build model constraints.

▪ It may be easiest to start with an intuitive method and migrate to a fast method

▪Leverage python packages such as pandas

